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Consider “nonuniform” (relative to the initial value of the parameter 

t) asymptotic stability, in the first approximation. It is shown that 

there are various types of conditions leading to nonuniform behavior 

with respect to to of the solutions of a linear system of differential 

equations, and the relationships between these various conditions are 

developed. Criteria for stability in the first approximation are intro- 

duced, criteria which contain a group of “uniform” equivalent criteria 

of Persidskii [1.21, Malkin [31 and Perron [41, and also the “general- 

ized” criteria of Liapunov M (see h, p.721, [v, P. 384, Note 31 and 

Malkin [81, see also [6, p. 3691). It is shown that the last mentioned 

criteria contain as a special case the generalized criteria of Liapunov. 

The criteria [91, considered for the case of ordinary (i.e. uncondi- 

tional) stability, are also special cases of the results of the present 

paper. 

ln this paper certain ideas of Krein [loI (see also [ill) are 

employed; and also, following Bellman [121, a theorem of Banach-Stein- 

haus [13,141 is employed. The paper admits of further generalization in 

the direction of the treatment of the equations considered, as Well as 

in the direction of considering the problem in arbitrary Banach spaces. 

and in the discussion of the so-called conditional stability (i.e. di- 

chotomy) in the sense of the paper of Massera and Schaffer [151. 

I take this occasion to thank A. Khalana for his many Suggestions. 

which have influenced the paper, as well as for his aid, which con- 

tributed to the completion of the paper. 

1. Preliminary remarks. Let Rn be a n-dimensional space and R,* 

be the space of all square n by R matrices. ?he norm of a vector x and 

of a matrix A will be denoted, respectively, by 
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IIs II = II (xih6%n 1 = (5 Xi3r II A II = II (a&3. i<n 
i=l 

I= zz (i uij’r 
j=l 

We shall consider the following differential equations: 

dx 
- = A (t) 2 
dt v > 0) (1.1) 

dx 
- = A (0 5 + cp (4 dt P > 0) (l-2) 

$ = A (t) X rt>O) (1.3) 

where 9(t) is a vector-valued function defined on [O, + 0~) and having 

values in the set R,, and which is subject in the following to various 

conditions; A(t) is a function defined on [O, + a~) and with values in 

R,* t and such that there exists a number A, > 0 such that 11 A(t) 11 <Aa 

on LO, + m); the matrix X is an n by n square matrix. 

‘lhe solution x(t) of equation (1.1) or (1.2), for which x(t,) = x0, 
will be denoted by x(t, tO, no). Analogously, the solution X(t) of the 

equation (1.3), for which X(t,) = X,,, will be denoted by X(t, t,,, X0). 

If I is the identity matrix of R,*, then, introducing the usual nota- 

tion: X(t, toI = X(t, to, I), we have the following relations: 

x (Ml,&) = x Wo) x0, X(V,) = x(VI) x Wo), x (h,h) = X” (Wl) 

4 to h, h>,O 

If 4t, to, ro) is a solution of equation (l.l), then 

x (b to, 50) = x 0, to) x0 (1.4) 

If dt, to, x0) is a solution of (1.2), then 

2 (6 to, 20) = x (G to) 5 + s x (C s) cp (s) QTS (1.5) 
1. 

Next we shall define a class of function spaces with which we shall 

have to deal frequently in the sequel. 

Let L be the set of all measurable functions q(t) on [O, + a~), with 

values in R,, and integrable on each finite interval, and suppose that 

a is a real number. Let us introduce the following Banach function 

spaces (assuming that one identifies all equivalent* functions): 

l Equivalent functions are functions which coincide up to a set of 

measure zero. 
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that is, the set of all functions ‘p in L (i.e. measurable and satisfy- 

ing the inequality between braces) and 

(1.7) 

that is, the set of functions in L which satisfy the inequality between 

curly braces*. In these spaces the norm is defined in the usual manner 

II (P InLaP = II cp Il(p.a) = [+fTl cp (s) lreps dslyP 7 PE [I, + ~1 (1.8) 
0 

II cp II L,oJ = n cp Il(co, a) = es8 SUP,>, II cp (s) II eas (1.9) 

Note 1.1. If n and b are two real numbers, then the linear operator 
nab which maps elements q(s) in L Pinto elements q*(s) in LbP, defined 

a 
as follows: 

cp* (s) = Q,” q = cp (s) e(a--b)s (1.10) 

possesses an inverse operator [Q~~I-’ = Rba and is an isomorphic and 

isometric (that is, preserves the distance between elements) map of the 

space Lap on the space lShp. 

In particular, all spaces Lap are isometric to the space LOP = LJ’. 
Further, if n < b, then Lap contains LbP, and the topology of the space 

LbP is stronger than the topology which is induced in LbP by the topology 

of Lap (in other words, from the convergence of a sequence of functions 

in the sense of the norm of the space Lb P it necessarily follows that the 

same sequence converges in the sense of the norm in the space Lap; in 

this sense, employing the terminology of [15,161, we shall say that the 

space Lb P is stronger than the space L,P) . 

2. Investigation of the systems (1.11, (1.2) and (1.3). 
Let. us now pass to the consideration of a series of conditions to be im- 

posed on the solutions of the equations (1.2) and (1.3). These condi- 

tions generalize the restrictions which are imposed on the motions of 

l The symbol ess sup,>, ,, y(s) denotes the lower bound of all numbers 

which are upper bounds of the function y(s) on sets which differ from 

the semi axis s > 0 by sets of measure zero. 
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systems of first approximation in the above mentioned 

A (h, a, b). There exist h, a, b > 0 such that 

II X (6 s) iI< /SF e-bf (t > s > 0) 
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criteria. 

B (a, b, p). There exist a, b > 0 and p in [l, t ml such that 

w~ep*7,X(t, s)Ipe-vds<+ 00 

0 

C (a, b, p). ‘here exist a, b > 0 and p in [l, + ~1 such that the 
solution x(t, to, no) of equation (1.2) belongs to Lbm for each 9 in LP, 

that is 

ess sup 1 z (t, to, zo) 11 em = N < 00 for 
\ 

11 ‘p (8) IIP cm ds < 00 
;, 

lhe fundamental result of this section is contained in the following 

theorem: 

Theorem 2.1. The following relations are valid: 

Equivalences 

(4 A@, a, 6)wC(a, h 1) 
for 

pE(l*+ 001 

0) B(&hq)wC(a,hp) 
$+$=I 

{ !7E [I#+ 00) 

Implications 

(7) B (a, 6, q), c (6 4 p) I) A@, U, 6) for ~Eu.+-l, qE [C + =) 

(6) A(h, a, b)iC(u, b-s, p) for P E (L+ =I ahd 

Before proving this theorem, we shall forrrrulate 
proof will be omitted, for the sake of brevity, in 
city. We only note that one employs an inequality 

Lemma 2.1. ‘lhere exists T > 0 such that 

arbitrarily given e > 0 

two lemnas, whose 
view of their simpli- 
of Bellman L171. 

IjX(t, s)-X(t, t,)j\<fjjX(t, to)1 for sEVO--TT, to+T] 0, to),o) 

lhe following 1-a is an imnediate consequence of the learna just 

proved: 
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Lemma 2.2. ‘here exists T > 0 such that 

Let US now formulate the important theorem of Dana&-Steinhaus type 
on which is based, in an essential way, the proof of Theorem 2.1. 

Theorenr 2.2. Suppose that, for certain real numbers a and b and a 
certain p in [l, + ml, the integral 

t 

vtu = 
s 

x (t, s) 2.4 (s) ds (t ia01 

0 

defines a linear operator V 

V:LaP *Lb? (Vu)(t) = Vtu 

Then this operator is a continuous operator, that is to say, there 
exists a number dl > 0 such that 

Furthermore, 

a) if p is in (1, + al, then 

1 

sup [i e*btllX(t, s)~~qe-qa~ds]4< + 00 
l>O 0 

(q = -f--) 
P--l 

b) if p = 1, then 

SUP @IIX(t, dlle-8< + 00 
t>a>O 

Proof. Let us prove first the first part of the theorem. 

Suppose that lt,) is the sequence of all rational numbers, arranged 
in a certain order, and suppose that the linear bounded operators 

vk:LaP4Tn (k -- 1,2, . I *) 

are defined by the formulas 

v*u = ebikVtliu (k = 1,2, . * .) 

Since, for each II in Lap we have, by hypothesis, that 
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then, according to the Banach-Steinhaus theorem 1131 it follows that 

there exists a positive number M for which 

II Vk II d M (k = 1, 2,. . .) 

Consequently 

II vk” II < M II u IIt,,, 0) or ebtk 11 1 X ($3 4 U (8) ds II< M 11~ lItp, 0) (k = 1,2, . . .) 
0 

which, by continuity, implies that 

t 
bt 

e IS X (4 4 u (4 ds II < M II u IIcps aj tt > O) Or II vU IItm, b) d M iI U ntp, a) (2.3) 
0 

Let us now prove the second part of the theorem. 

suppose that xlj(t, s), . . . . x,j(t, s) (j = 1, . . . . n) are the 

columns of the matrix X( t, s). 

a) Let p be in (1, + m), and let t > 0 be arbitrary, but fixed during 

the discussion. Consider the functions 

‘i ts) = (“ij tS))l<j<n (i = 1,. . ., n) 

where 

uij (6) = 11 x (t, 8) ,-+ e-*aszij (t, s) [i 11 X (t, s) I? emqcu ds]- $, 8 E IO,4 
0 

'{j (') = '9 s>t (i,i=l,...,n) 

It is easily seen then that 

ui E Lap, II ui II@, a) < ’ (i = 1, . . ., n) 

Applying inequality (2.3) we then obtain that 

t 
Memb’ > 1s x(t,S)Ui(d)dsll=l\S [$ ($ raj(‘*S)Uij(S)) e,] dsn= 

a=1 j=l 

={~ (~;;: ~mj(‘,s)U~j(s)]d~~~~r,~[~ zij(t,o)Uij(s)]dSI= 

a=1 0 j=l 0 j=l 
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from which it follows that 

Now, as is easily seen, for arbitrary integrable non-negative func- 

tions on the set E, fl(s), . . . . f,(s), one has the inequality 

and hence one obtains finally that 

as was desired. 

The case p = + m may be treated analogously, the difference being 

that the functions uij(s) 8re then defined store simply 

uij (5) = 
zi j (t, s) e- 

JIX(f,s))I t ‘EIO# tli "ij(s)=os s>t (i, i = 1, . . ., a) 

b) Suppose that p = f and t > f,, h 0 is an arbitrary number. fixed 

during the discussion. Applying Lemma 2.2 to the equation 

dY 
-=- 

d% YA (T) 

that is, to the matrix Y(T, a) = X-lf~, u) = X(0, T), one can conclude 

the existence of a number I', independent of t and S, such that 

I~~~(s,~o)I~%IIX(~~,~~)II=~<~ for sE.[t0-T, h-l-T], to),0 



On nonuniform asyaptot ic stability 

Consider now the function 

s E 1% PI (a = max (0, to - T)\ 
u (8) = 

(e-O’ / 47’) X (8, to) ~0, 

0, 0 < 8 & ia, PI \P = min (t, to + 2’)) 

It is easily seen that 

u E Lb, II 11 iltl, aJ < II ~0 II 

Applying the inequality (2.31, we obtain that 
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f 

Me-*’ > I$ 
0 a 

=$lX(t~te)~~ll~e-~s~~llX(t,t~)~~lle~~[~-a~ 
a 

and, consequently, in view of the arbitrariness of x0, we obtain that 

fl X (t, to) II< 4MeaT ea4e-*‘, t ,, T, II X (4 to) II B 2, t<T 

Introducing the notation 

h=max[2/min(ea4ed’); 4MezaT] (O< t < to < T), 

we obtain finally that 

II X (4 to) II d *e-Y t>ta>o 

and Theorem 2.2 is proved. 

Note 2.1. In case (a) the boundedness of the matrix A(t) for t >O 
turns out to be unessential, while in case (b), on the contrary, it is 
extremely essential, in order that the proof of Theorem 2.2 carry over 
without change to an arbitrary Banach space, instead of R,. 

Note 2.2. A similar theorem appears, without proof, in Bellman’s 
paper [121. There the theorem is formulated for a finite dimensional 
space, with a = b = 0, p = 1, 2, . . ., + m (see also, in this connection 
C13,14l). 

I 

Proof of Theorem 2.1. The implication A(h, a, b) =+C(a, b, 1) is 

obvious. In order to prove that C(a, b, 1) + A(h, a, b), consider the 
solution 

t 

2 (t, ‘ho) = 1 X (4 4 cp (4 ds 0 > 0) (2.4) 
0 
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of equation (1.2). In view of the hypotheses. the function 

(V,cp) ebf = rebt 

is a bounded function for t >,O for each ‘p in L,‘. According to Theorem 

2.2, from this follows the existence of a number h > 0 such that 

ema* 11 X (t, s) 11 ebt < h, t>s>o (2.5) 

and this implies the condition A( h, a, b). The equivalence of the condi- 

tions C(a, b, p) and B(a, b, q) can be proved analogously. 

Let us prove next that 6(a, b, q) =+ A(h, a, b). In order to do this, 

let us suppose that R(a, b, q) holds, while A(h, a, b) does not, that 

is to say that there does not exist a number 

ity (2.5) is valid. 

Let us determine a sequence {h,) such that 

limh,=+m as nd + 

Then there exist sequences {t,), {s,) such 

t,>snt edan II X P,, s,,) II 2”’ > h,, 

h > 0 for which inequal- 

m 

that 

(2.6) 

(n = 1,2,3, . . .) (2.7) 

It is easy to see that necessarily suput, = + m; indeed, if this were 

not the case, then (2.6) and (2.7) would hold on a compact set* 

which is impossible. since X( t, S) is continuous in each argument, and 

II x (4 4 II Q II x (4 0) II II x (0, s) II 

Extracting (if need be) three subsequences, and labeling them. re- 

spectively, {h,,), {t,), {s,), it may b e supposed further that lim t, = 

tmasnd+m. 

We now consider two cases. 

a) Suppose that sup,sn < + m; in this case, in view of the condition 

6(a, b, 4). there exists a constant C > 0 such that 

l That is, on a set such that every bounded subsequence of it possesses 

at least one limit element. 
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e+’ [ x (t,, s) lf eqbtn ds > s e+“’ 11 X (t,, s) If eqbtn ds 
0 in 

for all numbers n which are sufficiently large, where T is the number 

which is determined by means of Lemma 2.2. According to this lemma, and 
inequality (2. ‘I), one may assert further that 

an+ T 

e-qcrr 11 X (t,, sn) If eqbfn ds > $ e-qaThnq+ + - 

as n - + a~, which 

b) suppose now 

lim s, = +‘a, as n 

io 

is impossible. 

that SUP,,S~ = + 0~; in this case we may assume that 

- m* and then. as in case (a), we obtain the inequal- 

In 

c> s e-qar 11 x (t,,, S) Iv eqbfn ds > y 

T 

e*a‘ II X (t,, s) If eqbln ds > +nq -, -I- CKJ 

0 %a- 

as n - t a, which is also impossible. 

Finally, the implication A(h, a, b) +C(a, b - E, p) for arbitrary p 

in (1, + al and arbitrary E > 0 follows in a corresponding manner from 

the inequality 

t 

II x (t, O,O) II e (b-c); <e(b--r)t 
s 

II X (4 4 II. II cp (4 II da Q 
0 

< etbsejt 
(1 
’ 11 X (t, s) If eeqas ds)’ (i 11 cp (s) 11’ ep” ds)’ < htf em” 11 cp ntp, a) < Cl 

0 0 

or from the inequality 

II x V, 0, 0) II e(b--r)f d ( ~2 II cp (4 0 eonI dbbc)’ 1 II X k.4 II e”‘ ds < hPf I cp lltoo, a) < G 
0 

where C,, C, > 0 are sufficiently large constants. The theorem is thus 

completely proved. 

3. Application to the problem of 
approximation. Consider the equation 

dx 
- = A (t) 2 + @(z, q, 
dt 

stability to the first 

XER, (3.1) 
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where A(t) is the matrix-valued function of (1. l), and 0(x, t) is a 
vector function, defined and continuous on the set 

t>o, 1141\< D P>O) (3.2) 

and satisfying the condition 

IIW, t)II\(fWT (m>,l) (3.3) 

where the number m and the real valued function f(t) are specified more 
precisely below. 

For equation (3.1) there exist various important criteria of sta- 
bility in the first approximation; they may be divided into two classes. 
In the first class one finds the criteria based on the condition im- 
posed on the matrix X(t, t,) by Persidskii [II 

11 x (t, to) (I< he-” (+), t),to>o (3.4) 

These criteria constitute the class of “uniform” criteria. In the 
second class one finds the “generalized” criteria [5,8,9,181, that is 

to say, the extensions of the criteria of the first class to the “non- 

uniform” case. For example, the condition of Malkin, in the present nota- 

tion, has the form 

nX(t, to)I~<hf?t~e-a(f-t~), m >+ (3.5) 

Let us now formulate certain criteria of stability in the first 
approximation which comprise all these criteria just mentioned. 

Theorem 3.1. Suppose that the equation of first approximation (1.1) 

satisfies condition A(h, a, b) for some h > 0, a >b > 0, and that 

0(X, t) satisfies the inequality (3.3); and consider the following cases: 

(4 m>t, a>,h PE [I, + c=lv fEhlP, 1lfU(,,,)~ K, 
-- -- 

11 x0 II< D1, 11 x0 II< [ 2 (m - 1) hm K, 11 e@--mb)s(ll q, 0)] ,‘I e ‘“,“-? to 

@I m=+, a>b, P = 1, f EJS?, Ilf II& O)\<K1 

/l x0 ll < D1, I] x0 11 Q [2 (m -- 1) IL~K,] 
-- 

,‘-I e- * ‘* 

(7) m=a 
b ’ a = b, PE[i, + ~19 f EL07 IlfIl(P,o,\<~P 

ll~oIl~Dl 
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where (I--L, 
P--l 

D1 <D, K,, p E [1, -+ cc] are constants. Then 

every solution x(t, to, x0> of equation (3.1) satisfies the implications 

(a), (Pi, (r) -=+ I/z (6 to, "o)(I\<Heaf~-bfl/20(1, tZ&), 0 

@)=qz (t, to, x0)]/< A@* cpct ))20Jj, t > t, >o 

where 

H = 2h k in cases (a), (p); H=hehXP in case (T); c=b-Ma>0 in case(a) 

Proof of Theorem 3.1. Y’e have that 

It x (4 to, ~1 il i\< II X (4 lo) II II 20 II + 1 II X (4 ~1 II II @ @W, ~1 II dr, t),t,>o 

$0 

Setting 

t =to+s, 7=t*+c, II 3 00 + s, to, 5) If = gl (4, ~~~~=ll~oll 

and observing the condition A(h, a, b), we obtain that 

Y 
cp (s) < heat62 -W,+s&,, (0) + 

s 
/&f,+@ ,-~(fo+s)f (to $ a) pm (3) dz 

n 

which means that 

cp (s) < ke-bsq (0) + ke-b8 i eQ”f (to + 6) ‘pm (3) dq 
k = hefawb)‘O, 

h, 
h>t 

0 

It is readily seen that if y(s) is defined by the equation 

t@ (s) = kewb8q (0) -f- kemb8 1 e”“t (to + CT) 9” (3) d&, S),O (3.6) 
0 

then, on the one hand 

‘p (4 G ‘I (4, s>o 

while, on the other hand, a simple differentiation of (3.6) leads to 

$+btb= Q(s)'@", Q (s) = ke(a--a)sf (to + s) (3.7) 

In cases (a), $5) this equation is of Bernoulli type. Solvfng it, we 
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obtain 

9 (8) = [[rp (O)]l_” P--l)bs - (m - i) ke(-1)“s 5 
1 -- 

&‘-“‘@‘f (to + a) da 1 m-1 8 s>o 

0 

But ~(0) = kq(O) and T(S) Q y(s). consequently 

cp (s) < ke-"*q (0) { 1 - (m - 1) km [cp (O)]“’ j &-@“j (to + ts) da) 

1 -- 

-’ (3.9) 
0 

Case (a). Since In this case k = hecoBb) t0, and 
6 

s / uo + 0) e (a--mb)o da d II f llcp, o) II e(a--mb)a /Itq, o), $+$=i (3.9) 
0 

then, from the Inequality (a) for 11 x0 11, together with (3.8) and (3.9), 
it follows that 

1 

cp (4 B 2 
m-1 he(+Woe-b6cp (0) =2 tkl ~a'oe-Wo+Qcp(o) 

or, in the preceding notation 

II 2 (t. to, zo) II d Hea’oe-b’ II z. II, f&2”& (3.10) 

Case (p). Since Nb = a and p = 1, then (3.8) and Inequality @) for 
11 x0 11 imply, as before, that (3.10) holds. 

Cases (y) and (6). In these cases the proof proceeds in an analogous 

manner, the difference being that equation (3.7) is linear; however, in 
these cases the results coincide essentially with the results of Krein 

[lOI and Kucher[lll. 

Theoren 3.2. If equation (1.2) satisfies condition C(a, b, r), 

a, b > 0, r in [l, + ml, then all the conclusions of Theorem 3.1 are 

valid. Further, in case (p) the following improvement is possible: 

(p’). Suppose that for a > b, II >a/b 

where 

Then 

11% (6 

9 E La’, II \P II@, a) GKrs rE[l, + ml W, > 0) 

one has 

to, %:o)[\< m+--q~o II* t>to>o, fELJ,‘, Ilfllo%ot<~~ 



On nonuniform asymptotic stability 357 

Proof. Since Theorem 2.1 implies that C(a, b, r) =+ A(h, a, b), then 

the first part of the theorem follows automatically. In order to prove 
the last part, let us suppose that (1.2) satisfies the condition C(a, 

b, r) for some r 
it follows that 

in 11. + ml, a > b > 0 and that a >, a/b. From C(a,b,r) 

11 x (f, to) n q hCab-bf, t>ro>O 

h > l/4, and let us prove that 

-bt 
I = U, 109 20) II < hal’e II =0 II. t>,to 

t 
1 -- -_ 

Let us choose 

provided that 

II 5 ll f Wea41-1 { 4wJ, 11 ebt 1 X (4 8) 9 (4 ds I,, o) } “-’ 
n 

Since IIz(to, to, ~~)n=nzou<4hIIzoUlc(~~)‘r, it follows that, whenever 
t > to, with t sufficiently near to, the required inequality does indeed 

hold. Let us suppose that there exists some number T > t,, for which 

[lx (T, to, 20) ll = 4bat*Fb* II =o II 

while, for all t in [to, T) we have 

-bt II 2 k to, 5) II < 4hafoe II x0 u (3.11) 

This supposition will be shown to lead to a contradiction. Consider 
the function 

It is readily seen that 

m cp (8) = [4mhm iI20 II eam’o]-1 b, [Cp (b), S] E La’, II \P lltr, a) < Kr 

From this, together with condition C(a, b, r), it follows, for t in 

rt,, I) that 

But, for these values of t we have 
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that is to say, that 

From this, in view of the condition imposed upon II *o II, we obtain 
finally that 

which is impossible, since it contradicts the assumption 

Thus the theorem is proved. 

Let us now prove that if equation (1.1) possesses positive eigen- 

values, then one always has a certain theorem of stability in the first 

approximation. 

Let us denote by h, < . . . < An the eigenvalues of (1.11, and by 

PI >e.* > p, the eigenvalues of the equation 

dY 

dz= - yfl (a Y E R,’ 

Then the following theorem holds: 

Theorem 3.3. If A, > 0, then for arbitrary cz < p,, b < h,, and a 

certain h > 0, equation (1.1) satisfies condition d(h, a, b) and even 

condition C(a, b, p,) for arbitrary p in [l, + al. Consequently, the 

conclusions of Theorems 3.1 and 3.2 erp valid. 

‘Ike proof of this theorem follows from Lemma 3.1 below. 

Let us denote by Ni .(t) (i, j = 1, . . . , n) a normal system of solu- 

tions of equation (l.lj (see, for example, [6, pp.323-3321) and let 

a, < .*. <hn be the corresponding eigenvalues 

hj = eigenvalue of (N,j (t), . . . , Nnj (t]) (j = 1,. . , nf 

By N(t) we shall denote the matrix whose columns consist of the 

normal solutions just mentioned 
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{Nlj(t), - - * 9 Nnj(t)}, t>o (i=l,..,,n) 

Ibis matrix possesses the following properties: 

a) N (t) E K*, t>o 
b) X (t, to) = N(t) N-l (to) v, to>,w 
4 

dN-l(s) 
- = - N-’ (s) A (s) 

ds 
(s>O) 

d) If the elements of the inverse matrix N-‘(s) are denoted by N*-l, 

e) If cl,> . . . >cl, are eigenvalues of the matrix N-‘(s), that is 

pi = eigenvalue of {Ni;‘(s), . . . , Ni,‘(S)} (i = 1, . . . , n) 

then one has that (see, for example, [191) 

where o>O is the “coefficient of irregularity” of equation (l.l), that 

is, the number defined by the equation 

eigenvalue of(exp - 5 Sp A (U) d”) + i A, = - o (0 > 0) (3.12) 

0 a=1 

Employing this terminology, the following theorem is valid: 

Lemma 3.1. If A < A, and ~1 < cl,,, then there exists a number 

h=h(P, A)>0 

such that 

11 X (t, to) I] Q he+* e-If 

Proof. Since h < A, and A, is the,least 

N(t), we have that 

ttt to > 0) (3.13) 

eigenvalue of the matrix 

II N (0 II < kl (A) e--l’, 

Similarly 

II N-’ 00) II < h* (P) e+% 

t > 0, kl (A) > 0 (3.14) 

to > 0, ha(P)>0 (3.15) 
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From property (b), together with (3.14) and (3.151, we then deduce 

that 

II x @c to) n G u N 0) 11 iv-’ (to) I] Q he+0 e--A’, t, to>0 

where h = h,h,, and the 1-a is proved. 

Lemma 3.2. For any E > 0 there exists a number 

k = k (e) > 0 

such that 

] X (t, to) I; < ke(s+W 4 e-h-~) U--I.), t, to>0 

where o is the number defined by equation (3.12). 

Proof. Let us denote the columns of the matrix X( t, to) by 

(zlj ('9 tO)t ' ' +* z,j(t# tO)) (i=l,...,n) 

(3.16) 

From (b) we have that 

zlj (t, to) = i N*, (t) Noi’ (to) (i,i= 1,. . .,n) 

From this, keeping in mind property (e), we obtain that 

a=1 

where CDij, kij = n mar, C,‘i are constants. Consequently, putting 

6 = q = E > 0, we obtain finally 

as was to be 

11 X (1, to) 11 ( ke(6+ac)‘re-(a,-L)(f-f.) 

shown. 

0, toso) 

Note 3.1. The “generalized criteria” of Liapunov follow from the 

generalized criteria of Malkin (M, or [6, p. 3691), and consequently. 

they also follow from the criteria expressed in Theorem 3.1. Indeed, 

since Liapunov’s condition means that [VI 

m>i+t (i = i, . . ., n) 



On nonuniform asymptotic stability 361 

where .W is the number appearing in Theorem 3.1, Ai are the eigenValUeS 
of equation (1.1). and a is the number given by (3.12), then one may 
choose a sufficiently stnall E $ 0 such that 

Now, since, in view of Lemma 3.2, the conditions of Malkin’s criteria 

are satisfied, this is just what was required to be proved. One may 
still note that (as may be easily seen from the examples given by Malkin 
([6, p. 3681 or Id)), the criteria of Malkin are not equivalent to 
Liapunov’ s criteria. 

Note 3.2. The criteria presented in 193, formulated for the case of 

ordinary (i.e. unconditional) stability, are included in Theorem 3.2 
for m = 2. a = 2k, b = k, p = + 0~. 
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